
INF280: Competitive programming

Louis JACHIET 1 / 45

Competitive programming

Multiple types of contest

• IOI

• ICPC (including SWERC)

• Top Coder

• USACO

• ...

Different parameters

• team or individual

• duration

• partial points

• ...

Louis JACHIET 2 / 45

Typical contest

A typical contest is generally a list of problems.

Problem statement

• a short story describing the problem

• a specification of the input and output (usually on stdin/stdout)

• limits (time / RAM / etc.)

• In-out example

Solution

A solution is a source code that gives the right outputs for the

given inputs using the time and memory specified.

Louis JACHIET 3 / 45

Barrel Example

Page 1 of 2

Baltic OI '03 P1 - Barrel

Baltic Olympiad in Informatics: 2003 Day 1, Problem 1

Some amount of water is poured into a barrel, then a number of cubes of different size and density are put into water.
Finally, a lid is put onto the barrel and pushed down until it touches the edges of the barrel.

Write a program to compute the resulting water level in the barrel.

It can be assumed that:

the density of water is ,
the influence of air can be neglected,
the cubes fit completely into the barrel,
the cubes do not rotate and do not touch each other.

Input Specification

The first line contains three real numbers - the bottom area of the barrel , the height of the barrel
, and the volume of the water . The next line contains the number of cubes
. It is followed by lines, each containing two real numbers describing the cube - the length of a side

of the cube , and the density of the cube .

Output Specification

The first and only line of the output must contain one real number - the resulting water level. The output must not differ
from the correct value by more than .

Sample Input

100 10 500
1
1 0.5

Time limit: 2.0s Memory limit: 64M

1.0

S (0 < S ≤ 1 000) H

(0 < H ≤ 1 000) V (0 < V ≤ S ⋅H) N

(0 < N ≤ 1 000) N

L (0 < L ≤ 1 000) D (0 < D ≤ 10)

10−4

Louis JACHIET 4 / 45

Why follow this course?

Competitive programming develops a lot of important skills:

• Algorithmic thinking

• Programming and Debugging

• Learning to describe algorithms

• Job interview style of technical questions

It is also fun :)

In this course you will also:

• familiarize yourself with C++

• develop your pseudo code skills

• learn how to methodically solve problems

Louis JACHIET 5 / 45

Why follow this course?

Competitive programming develops a lot of important skills:

• Algorithmic thinking

• Programming and Debugging

• Learning to describe algorithms

• Job interview style of technical questions

It is also fun :)

In this course you will also:

• familiarize yourself with C++

• develop your pseudo code skills

• learn how to methodically solve problems

Louis JACHIET 5 / 45

Organization of a typical course

1h30 lesson part

Learn some methods or algorithms and solve some exercise without

code, to develop algorithmic thinking.

1h30 coding

Solving exercise with code, to develop fast programming skills.

Louis JACHIET 6 / 45

Grading

Graded exercises in class

There will be 2 to 4 graded exercises without computers.

Final exam

The final exam will be on a computer in a SWERC-like contest.

Final grade

Your grade will be the half the graded exercises in class and half

the final exam.

Louis JACHIET 7 / 45

ICPC - SWERC

International Collegiate Programming Contest (ICPC)

ICPC is:

• Collegiate: team-based contests with teams of 3 students from

the same university

• International: teams from all over the world

The ICPC contest happens over multiple phases:

• University level (to select teams)

• South Western European Regional Contest (SWERC)

• European level (new contest!)

• World finals

Louis JACHIET 8 / 45

International Collegiate Programming Contest (ICPC)

ICPC is:

• Collegiate: team-based contests with teams of 3 students from

the same university

• International: teams from all over the world

The ICPC contest happens over multiple phases:

• University level (to select teams)

• South Western European Regional Contest (SWERC)

• European level (new contest!)

• World finals

Louis JACHIET 8 / 45

SWERC

Previous editions

• 2017-2021 At Télécom

• 2022-2023 In Milan

• 2023-???? In Jussieu

Louis JACHIET 9 / 45

SWERC-ICPC specificities

• 3 members per team (Telecom sends 2 or 3 teams every year)

• Contest is 5 hours

• One computer per team

• no Internet but some documentation allowed

• a few programming languages (C++, Java, Python3)

See also:

• https://swerc.eu/2023/regulations/

• http://icpc.global/worldfinals/rules

• http://icpc.global/worldfinals/programming-environment

Louis JACHIET 10 / 45

https://swerc.eu/2023/regulations/
http://icpc.global/worldfinals/rules
http://icpc.global/worldfinals/programming-environment

SWERC-ICPC ranking

In ICPC contests, teams are ranked using the following order:

• first we rank by numbers of problems solved,

• then we rank by “total time” to solved those problems,

• the time to solve a problem is computed as X + 20F where

• X is the number of minutes from the beginning of the

contest to the accepted submission

• F is the number of failed attempts

Usually a SWERC contest comprises around 12 problems.

Louis JACHIET 11 / 45

Final exam

• individual participation for a SWERC-like contest

• 3 hours

• around 6 problems

• one programming language, C++

• no Internet but some documentation allowed

Final exam on the 20th of June afternoon!

Louis JACHIET 12 / 45

Solving SWERC-like problems

Solving a problem requires to

• (optional) Reading the problem quickly to understand the

context

• Reading the problem very carefully

• Finding an algorithm solving the problem within the specified

limits

• Writing the code

• Testing the code on examples

• Submitting your program

• (optional) Debugging

Louis JACHIET 13 / 45

Solving SWERC-like problems

Program submission

Submitting programs

• You submit the source code on a website

• The system compiles your and then evaluates your programs

on unknown inputs while checking the limits

• After a few seconds or minutes the system produces a verdict

If the verdict is Accepted you have just solved this problem.

Louis JACHIET 14 / 45

Submitting programs

• You submit the source code on a website

• The system compiles your and then evaluates your programs

on unknown inputs while checking the limits

• After a few seconds or minutes the system produces a verdict

If the verdict is Accepted you have just solved this problem.

Louis JACHIET 14 / 45

Other verdicts

Compilation error.

It means your program does not compile...

Time limit exceeded / Memory limit exceeded

1s on a recent CPU is around 5× 107 loop iterations in C++

Also possible: infinite loop, memory corruption...

Runtime error.

Something went very wrong: assert failure, out of bounds,

segfault, division by zero, etc.

Wrong answer.

You have the wrong algorithm or a bug...

Presentation error.

Your output does not have the right format (i.e. extra space, caps,

etc.).Louis JACHIET 15 / 45

Solving SWERC-like problems

Testing your program

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 16 / 45

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 16 / 45

Testing programs

Cons:

• testing takes time

• it does not guarantee the absence of bugs

Pros:

• refused solutions incur a 20 min penalty

• it might take a few minutes to wait on a verdict

• the verdict itself is not enough to know what is happening

You should test your program in a quick but thorough manner.

Louis JACHIET 16 / 45

How to test?

You have limited time...

• no need to generate tests

• no need to write many tests

• adapt the amount of testing to the complexity of your program

... but you do want to test

• use the sample in and out

• write several tests with several outputs

• compute in advance the results

• try to cover as many edge cases as possible

Louis JACHIET 17 / 45

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 18 / 45

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 18 / 45

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.

Louis JACHIET 18 / 45

Testing with files

In all likelihood you will test your program several times, therefore

your tests should lie in files:

./a.out < test01.in > test01.out # redirect in and out

diff test01.out test01.ans # compare with expected result

This works for Unix-based systems

with input in testXY.in and output in testXY.ans

for i in *.in ; do

echo "=== $i ===" ;

./a.out < $i > ${i%%in}out

diff ${i%%in}out ${i%%in}ans

done

You lose 1 min to set this up and can gain much more.Louis JACHIET 18 / 45

Solving SWERC-like problems

Writing code

When you have the idea

Try to reformulate the idea for your solution:

• imagine explaining the idea to a peer

• look for ways to simplify the idea

• does your idea relies on a standard algorithm?

• if so, can you match exactly the algorithm description?

• can you add special values to match the edge cases?

Louis JACHIET 19 / 45

Using pseudo code

Writing pseudo-code has several benefits

• you can concentrate on the idea of the algorithm and not the

implementation details

• you can check that your idea works (correct answer and com-

plexity)

• and in a SWERC competition you free the computer

On simpler problems you can avoid writing pseudo-code or just

give the big picture.

Louis JACHIET 20 / 45

Classical programming errors

• using a non-strict comparison where a strict was required

• making a mistake in a constant (e.g. 100000 instead of

1000000)

• not allocating enough memory (e.g. int t[1000] and then

accessing t[1000])

• not checking for overflow or float type that are not precise

enough

• comparing two different types of things (e.g.

idCow < nbCarrots)

• swapping xs and ys in a function call

• mixing variable and constant

Louis JACHIET 21 / 45

Adopt good and more importantly STANDARD practices

• always use semi intervals [a; b[

• write constants as product e.g. 1000* 1000

• constants should be defined with consts, e.g.

const int MAX_NB_COWS = 42;

• note precisely which cells you might access in an array

• compute the maximal values for all dimensions

• always use meaningful variable names (e.g. idCow, nbCows,

etc.)

• fix function parameters order, e.g. f(x,y) and t[y][x]

• store the input in global variables / arrays

Louis JACHIET 22 / 45

Know your types!

For integer types:

• char, 8 bits, −27 to 27 − 1

• int, 32 bits, −231 to 231 − 1 not standard

• long long, 64 bits, −263 to 263 − 1

• int128, 128 bits, −2127 to 2127 − 1

There is also the unsigned version (only positive numbers).

For float types, we have 1 bit for the sign and:

• float, 23 bits fraction, 8 bits exponent

• double, 52 bits fraction, 11 bits exponent

• long double, 64 bits fraction, 15 bits exponent

Louis JACHIET 23 / 45

Know your types!

For integer types:

• char, 8 bits, −27 to 27 − 1

• int, 32 bits, −231 to 231 − 1 not standard

• long long, 64 bits, −263 to 263 − 1

• int128, 128 bits, −2127 to 2127 − 1

There is also the unsigned version (only positive numbers).

For float types, we have 1 bit for the sign and:

• float, 23 bits fraction, 8 bits exponent

• double, 52 bits fraction, 11 bits exponent

• long double, 64 bits fraction, 15 bits exponent

Louis JACHIET 23 / 45

Know your types (string)!

C strings

A string in C is an array of char ended by a value 0 (also written

'\0').

C++ strings

C strings work in C++ but C++ also has a string object. You

can use string(myCstring) to create a C++ string out of a C

string (this will be useful for comparisons!).

Louis JACHIET 24 / 45

Know your types (string)!

C strings

A string in C is an array of char ended by a value 0 (also written

'\0').

C++ strings

C strings work in C++ but C++ also has a string object. You

can use string(myCstring) to create a C++ string out of a C

string (this will be useful for comparisons!).

Louis JACHIET 24 / 45

Use C+ not C++

C++ is a very complete language:

• object-oriented programming

• templates

• exception handling

• lambda functions

We DON’T want those for competitive programming.

We want C+, which is C and:

• auto, const, boolean

• references, foreach

• and all of the STL

Louis JACHIET 25 / 45

Use C+ not C++

C++ is a very complete language:

• object-oriented programming

• templates

• exception handling

• lambda functions

We DON’T want those for competitive programming.

We want C+, which is C and:

• auto, const, boolean

• references, foreach

• and all of the STL

Louis JACHIET 25 / 45

Solving SWERC-like problems

Reading and solving a problem

A seven step method

These seven steps will help you find solutions:

• Reformulate / summarize

• Listing dimensions

• Finding good visual representations

• Do examples by hand and represent the solution visually

• Finding a naive algorithm

• Simplify the problem

• Change the point of view

Remember this method!

Louis JACHIET 26 / 45

Step 1: Reformulate and summarize

After carefully reading the problem you should be able to:

• summarize the problem in one (or very few) sentences in the

form of a question leaving out all numerical constraints listed

in the dimensions (step 1)

• list the parameters or dimensions of the problem (step 2)

Do not hesitate to read the problem multiple times. Usually there

are no bugs in the subjects, if you don’t understand something you

have probably missed something.

Louis JACHIET 27 / 45

Shattered Cake

Reformulation

We have a big rectangle split into many rectangles of known

lengths and widths. We know the width of the big rectangle, what

is its length?

Louis JACHIET 28 / 45

Shattered Cake

Reformulation

We have a big rectangle split into many rectangles of known

lengths and widths. We know the width of the big rectangle, what

is its length?

Louis JACHIET 28 / 45

Step 2: Listing all the dimensions of the problem

In a problem you are often given values in a dimension (it might be

the age of a cow, the number of boxes, the number of lanes in a

road, etc.).

You should list precisely all of the dimensions

And for each note the minimal/maximal values and whether the

order is important.

Different types of dimensions

We can distinguish between input, output or implicit dimensions.

Use this step to consider what types might work!

Louis JACHIET 29 / 45

Step 2: Listing all the dimensions of the problem

In a problem you are often given values in a dimension (it might be

the age of a cow, the number of boxes, the number of lanes in a

road, etc.).

You should list precisely all of the dimensions

And for each note the minimal/maximal values and whether the

order is important.

Different types of dimensions

We can distinguish between input, output or implicit dimensions.

Use this step to consider what types might work!

Louis JACHIET 29 / 45

Let us consider Shattered Cake, what dimensions do you find?

Input dimensions

• 1 ≤ N ≤ 5× 106

• 1 ≤ W ≤ 104

• 1 ≤ wi , li ≤ 104

Output dimensions

• 1 ≤ L ≤ 104

Implicit dimensions

• 1 ≤ A ≤ 108

Louis JACHIET 30 / 45

Let us consider Barrel, what are the dimensions?

Louis JACHIET 31 / 45

Step 3: Finding good visual representations

You can now find a visual representation. Usually there is a pair of

dimensions that offer a good representation...

Barrel example

Louis JACHIET 32 / 45

Step 4: Craft examples and solve them by hand

Solving examples by hand has many benefits:

• it provides you with examples to test your program

• your mind is lazy and might find an “algorithm” if you create

examples that are complex enough

• you can use your examples with the visual representation to

understand some properties of the problem

Louis JACHIET 33 / 45

Step 5: Finding a possibly naive solution

Do you have any algorithm that finds the solution regardless of the

time and memory constraints?

You can try to put all the dimensions in the input.

Louis JACHIET 34 / 45

Step 6: Simplifying the problem (dim-DSR)

You can use the list of dimensions to simplify the problem. For

each dimension you can try to:

Delete (D)

What happens if remove completely the dimension?

Point in the 2D plane are now points on a 1D line

Set (S)

What happens if set all values in the dimension to a specific value?

All cows are 1 year old

Reduce (R)

What happens if we restrain the amount of possible values?

x is 0 or 1 instead of 0 to 100

Louis JACHIET 35 / 45

Step 6: Simplifying the problem (rules)

If the problem contains constraints that the solution has to follow

what happens if you simplify or remove the constraints?

This is a less mechanical way to solve problems...

...but it sometimes makes sense

Louis JACHIET 36 / 45

Step 6 bis: Ranking simplifications

Useless simplifications

Some simplifications simplify the problem too much or lead to a

problem that does not really make sense.

Promising simplification

A good simplification keeps the idea of the original problem. If a

simplification is just a particular case of the original problem, it

makes sense to (temporarily) forget about the original problem and

trying to solve this simplification.

Beware: some “simplifications” actually make it harder to find the

solution!

Ranking simplifications

Once you have listed all the simplifications you can think of, rank

them from most promising to most useless.
Louis JACHIET 37 / 45

Step 6 ter: Using simplifications

Once you have solved a simplified version of the problem you can

try to generalize it by:

• using it on the original problem (or a small modification of it)

• using it to solve a part of the problem

• repeating the solution for each possible value

• if two dimensions play the same role you can try applying the

simplification in one dimension and then the other

• generalizing the idea that lead to this solution

It is also often a good idea to look at what happens visually in

your solution to the simplified version.

Louis JACHIET 38 / 45

Step 7: Adopting a different approach

Usually most problems are disguised but can be solved with a

standard algorithm. Instead of trying to find the algorithm for a

problem you can list all the classical algorithms and try to use

them to solve the algorithm...

Louis JACHIET 39 / 45

Your first problems

Reminder on reading input

int d ; scanf("%d",&d); // reads the integer d

double f ; scanf("%lf",&f); // read the double f

char t[256] ; // remember that strings are null

// terminated when allocating space

scanf("%s",t); // reads a s string on the input

// until a space or a \n

scanf("%[^\n]",t); // reads a string t on the input

// until a \n (i.e. does not stop

// at a space). DOES NOT READ THE \n

scanf("%[^\n]\n",t);// reads a line, t ends with \0 not \n

scanf("%d %lf\n",&d,&f); // read an int followed by a

// double and eats the final \n (important if you

// want to read a string after)

Note that scanf returns the numbers of items read
Louis JACHIET 40 / 45

Reminder on writing output

printf("%d\n",42); // prints 42 and a new line symbol

printf("%s","Hello !"); // prints "Hello !" but

// no new line

printf("%lf",42.5); // prints 42.5

printf("%.2lf",42.5); // prints 42.50

// (.2 = 2 digits precision after .)

printf("%02d",2); // prints 02

// (%2d means at least 2 digits)

printf("%02d",42); // prints 42

printf("%02d",123); // prints 123 (at least 2 digits)

Louis JACHIET 41 / 45

Let us solve a very simple problem

Our first problem

Problem statement

The input contains on the first line 3 space-separated integers a, b

and c . The next two lines contain two strings st and sf with at

most 100 characters. Print st when a+ b = c and sf otherwise.

Solution

The problem statement is almost the algorithm :)

Louis JACHIET 42 / 45

Our first problem

Problem statement

The input contains on the first line 3 space-separated integers a, b

and c . The next two lines contain two strings st and sf with at

most 100 characters. Print st when a+ b = c and sf otherwise.

Solution

The problem statement is almost the algorithm :)

Louis JACHIET 42 / 45

C++ solution

#include <cstdio>

int main () {

int a,b,c ;

char s1[101], s2[101];

scanf("%d %d %d\n", &a, &b, &c);

scanf("%[^\n]\n",s1);

scanf("%[^\n]\n",s2);

if(a+b==c) {

printf("%s\n",s1);

} else {

printf("%s\n",s2);

}

return 0;

}

Louis JACHIET 43 / 45

Let us solve this on domjudge

Louis JACHIET 44 / 45

Today’s exercises

Today’s exercises

The exercises are simpler in term of algorithm but:

• the input is hard to read

• double-check the types you use

Louis JACHIET 45 / 45

	Competitive programming
	ICPC - SWERC
	Solving SWERC-like problems
	Program submission
	Testing your program
	Writing code
	Reading and solving a problem

	Your first problems
	Let us solve a very simple problem
	Today's exercises

