INF280: Competitive programming

Basic graph traversals

Louis Jachiet

Louis JACHIET



Introduction

You all know graphs:

e Set of nodes N
e Setof edges EC N x N
e Edges can be undirected or directed, i.e., (a, b) # (b, a)

N {A B,C}

e E {(AB),(A Q) (B, C)}

Louis JACHIET 2/



Data Structures

Several options to represent graphs:

e Adjacency matrix:
e bool GIMAXN][MAXN];
e G[x][y] is true if an edge between node x and y exists
e Replace bool by int to represent weighted edges
e Adjacency list:
e vector <int> Adj[MAXN];
e yis in Adj[x] if an edge between node x and y exists
e Pairs to represent weights
e Edge list:
e vector<pair<int, int> > Edges;
e Edges contains a pair of nodes if an edge exists between
them
e Nodes and edges may also be custom structs or classes

Louis JACHIET 3/21



Simple Traversals



Simple Traversals

Depth-First Search



Depth-First Search

Visit each node in the graph once:

e Recursive implementation below
e Manage stack yourself for iterative version

e First visit child nodes then siblings

int state[ID_NODE_MAX] ;
const int NOT_VISITED = O,
void dfs(int node) {
if (state[node] == NOT_VISITED) {
state[node] = IN_VISIT ;
for(auto v : nxt[node])
dfs(v);
state[node] = VISITED ;

IN_VISIT = 1 , VISITED = 2 ;

3

Louis JACHIET



Applications of DFS

Determine a topological order of nodes

Detect if a cycle exists

Check reachability between nodes
e Decompose graph into connected components

e Decompose graph in strongly connected components

Examples: https://visualgo.net/dfsbfs

Louis JACHIET 5/21


https://visualgo.net/dfsbfs

Tarjan representation of DFS

© ®
© © ()
&) ®

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET 6 /21



Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Useful to understand what happens...

Louis JACHIET




Tarjan representation of DFS

Backward

Exercise: compute Strongly Connected Component

Louis JACHIET




Simple Traversals

Breadth-First Search



Breadth-First Search

Visit each node in the graph once:
e Similar to DFS, but replaces stack by queue

int seen[NB_NODE_MAX] ;
void bfs(int start) {
vector<int> todo = {start} ;
seen[start] = true ;
for(size_t id = 0 ; id < todo.size() ; id++)
for(auto v : nxt[todo[id]])
if(!seenlv]) {
seen[v] = true;
todo.push_back(v) ;
}

Louis JACHIET 7/21



Applications of BFS

e Shortest path search

e Stop processing when a given node d was found

e Minimizes number of hops, i.e., all edges have same
weight or 0-1 Weights

e Generalization follows next

e Examples: https://visualgo.net/dfsbfs

Louis JACHIET 8/21


https://visualgo.net/dfsbfs

Simple Traversals

0-1 Breadth-First Search



Breadth-First Search with edges of bounded distance

vector<int> nodes_at [MAX_DISTANCE] ;
void bfs(int start) {
fill(dist,dist+NB_NODES_MAX, INF);
nodes_at [0] {start} ;
dist[start] = 0 ;
for(int cur_dist = 0 ; cur_dist < MAX_DISTANCE ; cur_dist++ )
for(size_t id = 0 ; id < nodes_at[cur_dist].size() ; id++) {
const int node = nodes_at[cur_dist] [id] ;
if (dist[node] == cur_dist)
for(auto [neigh,len] : nxt[nodel)
if (dist [neigh] > cur_dist+len) {
dist[neigh] = cur_dist+len ;

nodes_at [dist [neigh]] .push_back(neigh) ;
¥

Louis JACHIET 9



Finding Paths




Finding Paths

Dijkstra



e Dijkstra’s algorithm generalizes BFS
e Constraint: all edges need to have non-negative weights

e Use a priority queue to choose which node to examine next

Louis JACHIET 10 / 21



Finding Paths

Bellman-Ford



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Louis JACHIET 1 /21



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Bellman-Ford DP problem: “g(n, k) is the minimal distance of n
from the source node using k intermediate edges”

Louis JACHIET 1 /21



Bellman-Ford

e Dijkstra's algorithm is limited to non-negative edge weights

e Bellman-Ford extends this to general edge weights

Bellman-Ford DP problem: “g(n, k) is the minimal distance of n
from the source node using k intermediate edges”

Bellman-Ford can also be seen as a way to solve a linear system

with inequalities of the form: x; + ¢; < y;

Louis JACHIET 1 /21



Bellman-Ford Algorithm

int from[MAX_NB_EDGES], to[MAX_NB_EDGES],weight[MAX_NB_EDGES] ;
int dist[MAX_PATH_LENGTH+1] [MAX_NB_NODES] ;
bool BellmanFord(int root) {

£i11(dist[0] ,dist [MAX_PATH_LENGTH],INF);

dist [0] [root] = 0;

for(int len = 0 ; len < MAX_PATH_LENGTH ; len++)

for (int e = 0 ; e < nb_edges ; et++)
dist[len+1] [to[e]] = min(dist[len+1] [to[el],
dist[len] [from[e]l]+weight[e]);
// to be explained later; check for negative cycles
return dist[MAX_PATH_LENGTH] [target];

e replace dist[1] [n] with dist[n] = min/(dist[1] [n])
e MAX PATH LENGTH is at most nb_nodes long



Bellman-Ford Algorithm

int dist[MAX_NB_NODES];
void BellmanFord(int root, int target) {
£fill(dist, dist+MAX_NB_NODES, INF);
dist[root] = 0;
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]], dist[from[i]]+weight[i]);

Louis JACHIET 13 /21



Bellman-Ford Algorithm

bool detect_negative_cycle_BellmanFord(int root, int target) {
£i11(dist, dist+MAX_NB_NODES, INF);
dist[root] = 0;
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]l], dist[from[i]]+weight[i]);
// mow time to check for negative cycles:
int dist_target = dist[targetl; // copy distance
for(int k = 0 ; k < nb_nodes - 1 ; k++) // N - 1 times
for (int 1 = 0 ; i < nb_edges ; i++)
dist[to[i]] = min(dist[to[i]], dist[from[i]]+weight[i]);
return dist[target] < dist_target ; // negative cycle?
}

Louis JACHIET 14 /21



Finding Paths

Floyd-Warshall



Floyd-Warshall

e Dijkstra and Bellman-Ford compute shortest paths

e From a single source (root)
e To all other (reachable) nodes
e This is known as: single-source shortest path problem

e Floyd-Warshall extends this to compute the shortest paths
between all pairs of nodes

e This is known as: all-pairs shortest path problem

Louis JACHIET 15 /21



Floyd-Warshall

e Dijkstra and Bellman-Ford compute shortest paths

e From a single source (root)
e To all other (reachable) nodes
e This is known as: single-source shortest path problem

e Floyd-Warshall extends this to compute the shortest paths
between all pairs of nodes

e This is known as: all-pairs shortest path problem

Floyd-Warshall answers the DP problem: “q(start,end,pivot): what
is the shortest path between start and end going through
intermediate nodes 1..pivot?”

Louis JACHIET 15 /21



Floyd-Warshall Algorithm

int dist[MAX_NB_NODES] [MAX_NB_NODES] ;
// We store q(start,end,pivot) in dist[start][end]
void FloydWarshall() {
// initialize distance
£i11(dist[0] ,dist [MAX_NB_NODES],INF);
for (int e = 0 ; e < nb_edges ; e++)
dist[fr[e]l]l [tol[e]] = min(dist[fr[e]][tole]l], weight[el);
// mow compute
for(int pivot = 0 ; pivot < nb_nodes ; pivot++)
for(int start = 0 ; start < nb_nodes ; start++)
for(int end = 0 ; end < nb_nodes ; end++)
dist[start] [end] = min(dist[start] [end],
dist[start] [pivot]+dist [pivot] [end]) ;
}
// WARNING, the order of the loops %s important!!!
// for french speakers Pivot Début Fim => PDF algorithm

Louis JACHIET 16 / 21



Finding Paths

Improvements



Keeping track of the path

We only considered the length of the path so far:

e All of the above algorithms can track the actual shortest path
e This allows to print each edge/node along the path
e Basic idea:

e Introduce an array int Predecessor [MAXN]
(Use two-dimensional array for Floyd-Warshall)

e Updated whenever Dist[v] changes

e Simply set to the new predecessor u

Louis JACHIET 17 /21



Heuristics — A* Search

Heuristics may speed-up the path search

e Bellman-Ford and Floyd-Warshall equally explore all
possibilities
e Dijkstra prefers nodes with shorter distance
e Basic idea behind A* Search:
e Extension to Dijkstra’s algorithm
e Introduce an estimation of the remaining distance
e Prefer nodes with minimal estimated remaining distance
e Advantages

e May converge faster than Dijkstra
e Can be used to compute approximate solutions

(trading speed for precision)

Louis JACHIET 18 / 21



Eulerian Circuits




Eulerian Circuits

Eulerian path

Use every edge of a graph exactly once. Start and end may differ

Eulerian circuit

Use every edge exactly once. Start and end at the same node

Idea of the algorithm

If you enter a node of even degree you are sure that you can go
out, decreasing the degree of unused by 2. This gives a first
path/circuit. If your graph is connected, you can have remaining
edges unexplored, but at least one in your current path, so you can
re-explore them.

Louis JACHIET 19 /21



Eulerian Circuits

vector<int> path, nxt[NB_NODES_MAX] ;
set<pair<int,int>> used ;
void eulerian_path(int cur_node, int target) {
if (cur_node != target)
for(int n : nxt[cur_node])
if ('used. count ({n,cur_node})) {
used.insert ({cur_node,n});
used.insert ({n,cur_node});
eulerian_path(n,target) ;
target = cur_node ;
} // target is cur_node after first pass
path.push_back(cur_node) ;
}

Louis JACHIET 20 /21



We will see more graph algorithms next week...

Louis JACHIET



	Simple Traversals
	Depth-First Search
	Breadth-First Search
	0-1 Breadth-First Search

	Finding Paths
	Dijkstra
	Bellman-Ford
	Floyd-Warshall
	Improvements

	Eulerian Circuits

