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More advanced graph algorithms
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Implicit graphs



Implicit graph

The majority of the algorithms that you will implement can be

seen as graph algorithms:

• directly an application of a graph algorithm

• a modified version of a graph algorithm

• an application of a graph algorithm over a hidden graph

⇒ describing your problem as a graph problem usually helps
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Examples 1/3

Rabbit

We have a graph where nodes are cells of the grid and edge are

between nodes that are neighbors in the grids. Find the path

between two given points?
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Examples 2/3

Piggyback

Given a weighted graph G defining a distance d between nodes.

Find the node v minimizing Bd(v , 1) + Ed(v , 2) + Pd(v , n).
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Examples 3/3

Moocast

G is the graph where nodes are cows and an edge (a, b) exists

when b can hear a.

Find the node that can reach most other nodes.
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Why explicit the implicit graphs?

Help you reason over the problem:

• is it exactly the same problem?

• what are the properties of this implicit graph?

• can the problem on the implicit graph be simplified?

• can we reduce the number of nodes? of transitions?

• are we lacking important properties from the original graph?

Help you code the problem

The more standard algorithms you use the less likely you are to

have bugs.
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Union-find



Union-Find purpose

Maintain a collection of non-overlapping sets with the

following operations

• Add a new element, in its own set

• Get the set of an element

• Merge two sets

Queries we might need to answer

• Given two elements, are they in the same component?

• What the size of the component of x?

• What is the number of components?
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Union-Find

repr[x] ; // initialized to -1

int find(int x) {

if(repr[x] < 0) return x;

return repr[x]=find(repr[x]); // path compression

}

bool unite(int a, int b) {

a = find(a);

b = find(b);

if(a==b) { return false; }

if(repr[a] > repr[b]) { swap(a,b); } // size

repr[a] += repr[b] ;

repr[b] = a;

return true;

}
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Minimum Spanning Trees (MST)



Minimum spanning tree

Spanning tree

Given a connected graph G = (V ,E ) a spanning tree is a selection

of E ′ ⊆ E such that E ′ forms a tree covering all nodes in G .

MST Problem

Find the spanning tree that has minimal total weight.

Properties

The MST also minimizes the maximal weight of an edge.
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Example: Minimum Spanning Trees

https://commons.wikimedia.org/wiki/File:Minimum_spanning_tree.svg, Dcoetzee, public domain
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Computing MST

Kruskal’s algorithm

For all edges (a, b) by increasing weight

• if a and b not in the same component

• link a and b

Prim’s algorithm

Make a modified Dijkstra:

• maintain a set S of nodes, initialized as {x} for any node x

• while there remains a node not in S :

• select an edge {n, n′} ∈ E ∩(S ,V \S) minimizing w(n, n′)

• add {n, n′} to E ′
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Kruskal

vector<pair<weight, pair<int,int> > > edges;

// ...

sort(edges.begin(),edges.end());

long long weight_mst = 0;

for(auto [w,p] : edges)

if(unite(p.first,p.second))

weight_mst += w;
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Prim

long long dist[NB_NODES_MAX];

//...

fill(dist,dist+NB_NODES_MAX,INF);

set<pair<long long,int>> p_queue; // (weight, node)

p_queue.insert(make_pair(0,start_node));

dist[start_node] = 0;

while(!p_queue.empty()) {

auto [node_dist, node] = *p_queue.begin() ; // c++17

p_queue.erase(p_queue.begin());

for(auto v : nxt[node])

if(v.second < dist[v.first]) {

p_queue.erase(make_pair(dist[v.first],v.first));

dist[v.first] = v.second;

p_queue.insert(make_pair(dist[v.first],v.first));

}

}
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Flows and matching



Flow network

Definition

A flow network G is a graph where each edge has a capacity value.

A flow network generally has a source s and an target t.

Flow

A flow in a G maps edges (a, b) to values fa,b such that:

• the flow along each edge is less than the capacity

• the source has an incoming flow equal to 0

• the sink has an outgoing flow equal to 0

• for other nodes, the total incoming flow is equal to the total

outgoing flow

The value of a flow is the outgoing flow from s.
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Max-flow = Min-Cut

Cut

In a flow network G with source s and target t, a cut is a partition

of nodes into 2 partitions S and T such that s ∈ S , t ∈ T . The

capacity of a cut is the sum of capacities of edges between S and

T .

Theorem

Max-Flow = Min-Cut

This means that the maximal value of a flow is equal to the cut of

minimum capacity.
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Bipartite Matching

Matching in bipartite graph

In a weighted bipartite graph (V ,E ) with V = X ⊔ Y , a matching

is a selection E ′ ⊆ E of edges such that no nodes in (V ,E ′) have

degree higher than 1.

Maximum matching

A matching of maximal total weighted.

Reduction to max-flow

Create two new nodes s and t, link s to all nodes in X and t to all

nodes in Y . All edges have capacity 1.
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Ford-Fulkerson “algorithm” for flows

Residual graph

Given a flow network G and a flow f we can compute the residual

flow network G ′ as G but where the capacity of an edge (a, b) is

ca,b − fa,b. Notice than an edge is removed when fa,b = ca,b and

using the convention fa,b = −fb,a an edge is created when fb,a < 0.

Ford-Fulkerson Method

• Initialize f with empty flow

• While there exists a path p from s to t in the residual

• increase f with the path p using maximal capacity

⇒ multiple algorithms to find the path lead to various complexities.
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Ford-Fulkerson with DFS

int capa[Tm][Tm], flow[Tm][Tm]; // adjacency matrix

bool visited[Tm];

int dfs(int x, int max_flow) {

if(visited[x]) return 0; // already search/ed for a flow

if(x==target) return max_flow;// found our flow

visited[x] = true; // stop visiting x

for(int n: nxt[x]) // mixes adjacency lists with matrix

if(flow[x][n] < capa[x][n]) { // residual

const int sub_flow = dfs(n,

min(max_flow,capa[x][n]-flow[x][n]));

if(sub_flow > 0) {

flow[x][n]+= sub_flow;

flow[n][x]-= sub_flow;

return sub_flow;

}

return 0; // haven't found a flow

}
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Ford-Fulkerson with DFS

int totalFlow = 0, curFlow = 1 ;

while(curFlow > 0) {

fill(visited,visited+Tm,false) ;

curFlor = dfs(source,INF) ;

totalFlow += curFlow ;

}

// in the worst case the flow increases by one each time

// hence in O(E) × F where F is the final flow

// if using integers
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Flow algorithms

Recognize flow algorithms

Flow problems are usually a bit counter-intuitive and hard to

recognize...

Multiple algorithms

The code above is for Ford-Fulkerson with DFS, this is not the

fastest method but the simplest. You can replace the DFS with a

BFS to improve the worst-case complexity.
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