
INF280: Competitive programming

Strings

Louis Jachiet

Louis JACHIET 1 / 8

String search

Typical string problem

String searching

You are given a text T (i.e. a long string) and a pattern P, and

you need to find a/all positions in T where P appears.

Usual variations:

• T and P not necessarily made of chars

• multiple patterns P1, . . . ,Pk

• different types of patterns (case insensitive, regexps, etc.)

Louis JACHIET 2 / 8

Find a string pattern within another string

• Naive algorithm:

// s is the string, p is the pattern

for (int i=0, j; i < s.size() - p.size() + 1; ++i) {

int j = 0;

while(j < p.size() && s[i+j] == p[j])

j++;

if (j == p.size())

printf("Match at position %d\n", i);

}

• Good on average

• Worst case time complexity O(|s| × |p|)
• Can we do better?

Louis JACHIET 3 / 8

Knuth–Morris–Pratt

Idea

If we matched j first letters of p at position i , we don’t need to

compare all of p for position i + 1.

Algorithm

For each prefix p′ of p, compute the longest strict suffix p′′ of p′

that is a prefix of p.

A nice and efficient algorithm, but hard to code. Let us see

something simpler.

Louis JACHIET 4 / 8

String hash

Idea

Have a hash function h that can easily be computed over a sliding

window.

In practice

Given the text s1 . . . sn and the pattern p1 . . . pk we compute

o = h(p1 . . . pk), then for each i ∈ n − k we compare h(si . . . sk+i)

with o. If they match there is a high probability there is a match

at position i .

To get linear time

h(si+1 . . . sk+i+1) can be computed from h(si . . . sk+i) by adding

sk+i+1 at the end and removing si at the beginning.

What hash function has the right properties?

Louis JACHIET 5 / 8

String hash

Idea

Have a hash function h that can easily be computed over a sliding

window.

In practice

Given the text s1 . . . sn and the pattern p1 . . . pk we compute

o = h(p1 . . . pk), then for each i ∈ n − k we compare h(si . . . sk+i)

with o. If they match there is a high probability there is a match

at position i .

To get linear time

h(si+1 . . . sk+i+1) can be computed from h(si . . . sk+i) by adding

sk+i+1 at the end and removing si at the beginning.

What hash function has the right properties?

Louis JACHIET 5 / 8

String hash

Use Z/264Z with any odd number g > 1!

h(s0 . . . sk) =
∑
i

sig
k−i

Update h(s0 . . . sk)

• h(s1 . . . sk) = h(s0 . . . sk)− s0 × gk

• h(s0 . . . sksk+1) = g × h(s0 . . . sk) + sk+1

Notes:

• Z/264Z is just unsigned long long!

• You can precompute gk for all useful k

• Small g often have random collisions (BA=AF with g = 5)

• to make collisions unlikely, you also need to make sure that g is

bigger than the values manipulated and that min(k | gk = 1)

is big (g = 106 + 3 usually works)

Louis JACHIET 6 / 8

String hash

Use Z/264Z with any odd number g > 1!

h(s0 . . . sk) =
∑
i

sig
k−i

Notes:

• Z/264Z is just unsigned long long!

• You can precompute gk for all useful k

• Small g often have random collisions (BA=AF with g = 5)

• to make collisions unlikely, you also need to make sure that g is

bigger than the values manipulated and that min(k | gk = 1)

is big (g = 106 + 3 usually works)

Louis JACHIET 6 / 8

String hash alternative

Use Z/264Z with some g!

h(s0 . . . sk) =
∑

i sig
i

Update h(s0 . . . sk)

• h(s1 . . . sk) = (h(s0 . . . sk)− s0)× g−1

• h(s0 . . . sksk+1) = h(s0 . . . sk) + gk+1sk+1

Note that g−1 = g264−1 which can be precomputed with python,

e.g. with g = 27:

pow(27,2**64-1,2**64)=9564978408590137875

Louis JACHIET 7 / 8

String hash alternative

Use Z/264Z with some g!

h(s0 . . . sk) =
∑

i sig
i

Update h(s0 . . . sk)

• h(s1 . . . sk) = (h(s0 . . . sk)− s0)× g−1

• h(s0 . . . sksk+1) = h(s0 . . . sk) + gk+1sk+1

Note that g−1 = g264−1 which can be precomputed with python,

e.g. with g = 27:

pow(27,2**64-1,2**64)=9564978408590137875

Louis JACHIET 7 / 8

Exercises

Exercise 0.

If string hash acts as a perfect hash function (i.e. as a random

function) what is the probability of a collision? Given n distinct

strings, for what values of n, it is likely that two of those hashes

are equal?

Exercise 1.

Solve string matching with string hash. What is the complexity?

Exercise 2.

Solve string matching with many patterns p1, . . . , pk . What is the

complexity?

Exercise 3*.

Use string hash to search the longest palindrome in a string.

Louis JACHIET 8 / 8

	String search

