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Dynamic programming



What is Dynamic Programming (DP)?

Hard to define but roughly:

• we have a question depending on parameters

• that can be answered recursively

• the subproblems might appear multiple times or overlap

We don’t really care what is officially a dynamic programming

problem...
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What is Dynamic Programming (DP)?

Alternative definition:

• we have a state (the parameters)

• we have transitions (the recursion)

• we compute a function over the states using the transitions

⇒ a graph problem! (usually acyclic graph)
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Some typical DP problems

Compute Fn the n-th Fibonacci number

• question(parameter): compute fibo(n)

• recursion: Fn = Fn−1 + Fn−2

• overlapping subproblems:

Fn+2 = Fn+1 + Fn = (Fn + Fn−1) + Fn
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Some typical DP problems

I have weights w1 . . .wk can I reach a weight of T

• question(parameter): reach(w1, . . . ,wk ,T )

• recursion: reach(w1, . . . ,wk ,T ) = reach(w2, . . . ,wk ,T )∨
reach(w2, . . . ,wk ,T − w1)

• overlapping subproblems:

if, e.g., w1 = 1,w2 = 2,w3 = 3 we can achieve T = 3 in two

different ways
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DP vs Memoization

Memoization

Memoization consists of storing the result of a function, so

different calls with the same parameters can be answered directly.

DP vs Memoization

Typical DP solutions use memoization but DP can be seen as

something much larger...
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DP vs Greedy algorithms

Both DP and Greedy algorithms can be applied to problems with a

large set of configurations to be explored.

Dynamic Programming

DP approach generally explores the full set of configurations by

breaking down large problems into smaller problems while avoiding

to compute twice the same thing

Greedy algorithms

A greedy approach makes locally optimal choices leading to a

globally optimal solution. Some algorithms are said greedy even if

they lead to non optimal solutions
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Let us solve some simple DP

problems!



Exercise 1 to 4
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Classical types of DP problems



Path on grids
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Applications: Number of down-right paths, Levenshtein distance
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Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?
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dist(i , j)= min

• dist(i , j + 1)+1,

• dist(i + 1, j)+1,

• dist(i + 1, j + 1)+1,

• dist(i+1, j+1)) si vi = uj

⇒ O(n2) solution!

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0 0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2 2

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2 2

1

1

0

2

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21



Levenshtein distance
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Alternative solution
• we have a graph

• we can run a shortest

path algorithm!

⇒ in O(n× d) where d is the

distance.
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Enumerating subsets

Fix any ordering and then:

subsets(e1, . . . , en) = subsets(e2, . . . , en) with or without e1

Some considerations:

• the target function needs to be “composable”

• sometimes the order matters

• using bitmasks might help
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Range DP

Range DP problem

Given an array A compute some metric on all subarrays A[i : j ].

• in the simple case do(i , j) → ∀i<k<jdo(i , k) ∧ do(k , j) O(n3)

• sometimes do(i , j) = do(i + 1, j) ∧ do(i , j − 1) O(n2)

• sometimes you need to have a clever trick to

compute the full solution...
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Sparse DP

Generally memory is not an issue with DP but you might have very

few possible values over a large possible universe.

Use sets and hashsets!
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Special cases of DP



Implementing a DP requires an acyclic recursion

What to do when the recursion might be cyclic?

• not care about it

• enforce it with a new parameter

• changing the problem

Examples

• use a DFS (DFS can be seen as DP with cyclicity)

• use a shortest path

• use the DAG of strongly connected components

• use an ad-hoc solution
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How to improve an inefficient DP

solution?



The systematic method

Write the recursive decision problem and

• for each parameter:

• what are the possible values (min/max/nb)?

• can it be deduced from the other parameters?

• is it a strict equality?

• for the recursion formula:

• can it be simplified?

• are we recomputing the same thing twice?

• can we precompute some part of it?

• can we use an approach different from memoization?
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How to implement DP solutions?



The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Recursive solution

• dist(i , j) = distance between u0...ui and v0...vj

• dist(−1,−1) = i + j + 2 when i < 0 or j < 0

• dist(i , j) = dist(i − 1, j − i) when ui = vj

• dist(i , j) = 1+min(dist(i−1, j), dist(i , j−1), dist(i−1, j−1))
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The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Constructive solution

dist(i , j) = distance between u0...ui−1 and v0...vj−1. dist(i , j) is

the biggest number such that:

• we have dist(0, 0) = 0

• dist(i + 1, j + 1) = dist(i , j) when ui = vj

• dist(i + 1, j) ≤ 1 + dist(i , j)

• dist(i , j + 1) ≤ 1 + dist(i , j)

• dist(i + 1, j + 1) ≤ 1 + dist(i , j)
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The recursive approach

const char u[Tm], v[Tm] ;

int dyn[Tm][Tm] ; // initialized to -INF

int dist( int i , int j ) {

if(i<0 || j<0) // can only be -1 if negative

return i+j+2; // avoid out of bounds access

// i+j+2 = size of the non-empty string

int & cur = dyn[i][j] ;

if ( cur == -INF ) {

if(u[i] == v[j])

cur = dist(i-1,j-1);

else

cur = 1 + min(dist(i-1,j-1), dist(i-1,j), dist(i,j-1)) ;

}

return cur ;

}
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The iterative approach

const char u[Tm], v[Tm] ;

int dist[Tm][Tm]; // dist[i][j]= dist(u_0..u_i-1, v_0..v_j-1)

void min_equal(int & a, int b) { if(a>b) a=b;}

void compute_dist() {

fill(dist[0], dist[Tm], INF) ;

dist[0][0] = 0;

for(int i = 0 ; u[i] ; i++)

for(int j = 0 ; v[j] ; j++) {

// at step (i,j) we set the value dist[i][j]

if(i > 0) min_egal(dist[i][j],1+dist[i-1][j]);

if(j > 0) min_egal(dist[i][j],1+dist[i][j-1]);

if(i > 0 && j>0 )

if(u[i-1] == v[j-1]) min_egal(dist[i][j], dist[i-1][j-1]);

else min_egal(dist[i][j], 1+dist[i-1][j-1]);

} // answer in dist[lengthU-1][lengthV-1]
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The iterative approach (alternative)

const char u[Tm], v[Tm] ;

int dist[Tm][Tm] ;

void compute_dist() {

fill(dist[0], dist[Tm], INF) ;

dist[0][0] = 0;

for(int i = 0 ; u[i] ; i++)

for(int j = 0 ; v[j] ; j++) {

// at step (i,j) we ``propagate'' the value dist[i][j]

if(u[i] == v[j]) min_egal(dist[i+1][j+1], dist[i][j]);

min_egal(dist[i+1][j+1], 1+dist[i][j]);

min_egal(dist[i+1][j], dist[i][j]);

min_egal(dist[i][j+1], dist[i][j]);

}

} // answer in dist[lengthU][lengthV]

Louis JACHIET 21 / 21


	Dynamic programming
	Let us solve some simple DP problems!
	Classical types of DP problems
	Special cases of DP
	How to improve an inefficient DP solution?
	How to implement DP solutions?

