
INF280: Competitive programming

Advanced datastructure algorithms

Louis Jachiet

Louis JACHIET 1 / 21

Dynamic programming

What is Dynamic Programming (DP)?

Hard to define but roughly:

• we have a question depending on parameters

• that can be answered recursively

• the subproblems might appear multiple times or overlap

We don’t really care what is officially a dynamic programming

problem...

Louis JACHIET 2 / 21

What is Dynamic Programming (DP)?

Alternative definition:

• we have a state (the parameters)

• we have transitions (the recursion)

• we compute a function over the states using the transitions

⇒ a graph problem! (usually acyclic graph)

Louis JACHIET 3 / 21

What is Dynamic Programming (DP)?

Alternative definition:

• we have a state (the parameters)

• we have transitions (the recursion)

• we compute a function over the states using the transitions

⇒ a graph problem! (usually acyclic graph)

Louis JACHIET 3 / 21

Some typical DP problems

Compute Fn the n-th Fibonacci number

• question(parameter): compute fibo(n)

• recursion: Fn = Fn−1 + Fn−2

• overlapping subproblems:

Fn+2 = Fn+1 + Fn = (Fn + Fn−1) + Fn

Louis JACHIET 4 / 21

Some typical DP problems

I have weights w1 . . .wk can I reach a weight of T

• question(parameter): reach(w1, . . . ,wk ,T)

• recursion: reach(w1, . . . ,wk ,T) = reach(w2, . . . ,wk ,T)∨
reach(w2, . . . ,wk ,T − w1)

• overlapping subproblems:

if, e.g., w1 = 1,w2 = 2,w3 = 3 we can achieve T = 3 in two

different ways

Louis JACHIET 5 / 21

DP vs Memoization

Memoization

Memoization consists of storing the result of a function, so

different calls with the same parameters can be answered directly.

DP vs Memoization

Typical DP solutions use memoization but DP can be seen as

something much larger...

Louis JACHIET 6 / 21

DP vs Greedy algorithms

Both DP and Greedy algorithms can be applied to problems with a

large set of configurations to be explored.

Dynamic Programming

DP approach generally explores the full set of configurations by

breaking down large problems into smaller problems while avoiding

to compute twice the same thing

Greedy algorithms

A greedy approach makes locally optimal choices leading to a

globally optimal solution. Some algorithms are said greedy even if

they lead to non optimal solutions

Louis JACHIET 7 / 21

DP vs Greedy algorithms

Both DP and Greedy algorithms can be applied to problems with a

large set of configurations to be explored.

Dynamic Programming

DP approach generally explores the full set of configurations by

breaking down large problems into smaller problems while avoiding

to compute twice the same thing

Greedy algorithms

A greedy approach makes locally optimal choices leading to a

globally optimal solution. Some algorithms are said greedy even if

they lead to non optimal solutions

Louis JACHIET 7 / 21

DP vs Greedy algorithms

Both DP and Greedy algorithms can be applied to problems with a

large set of configurations to be explored.

Dynamic Programming

DP approach generally explores the full set of configurations by

breaking down large problems into smaller problems while avoiding

to compute twice the same thing

Greedy algorithms

A greedy approach makes locally optimal choices leading to a

globally optimal solution.

Some algorithms are said greedy even if

they lead to non optimal solutions

Louis JACHIET 7 / 21

DP vs Greedy algorithms

Both DP and Greedy algorithms can be applied to problems with a

large set of configurations to be explored.

Dynamic Programming

DP approach generally explores the full set of configurations by

breaking down large problems into smaller problems while avoiding

to compute twice the same thing

Greedy algorithms

A greedy approach makes locally optimal choices leading to a

globally optimal solution. Some algorithms are said greedy even if

they lead to non optimal solutions

Louis JACHIET 7 / 21

Let us solve some simple DP

problems!

Exercise 1 to 4

Louis JACHIET 8 / 21

Classical types of DP problems

Path on grids

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

Applications: Number of down-right paths, Levenshtein distance

Louis JACHIET 9 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0
dist(i , j)= min

• dist(i , j + 1)+1,

• dist(i + 1, j)+1,

• dist(i + 1, j + 1)+1,

• dist(i+1, j+1)) si vi = uj

⇒ O(n2) solution!

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0 0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2 2

1

1

0

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

Levenshtein distance

Given two words u1...uℓ, v1...vk what is the number of edits

(replace, delete, or insert letter) needed to transform u into v?

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2 2

1

1

0

2

• insert s

• t=t

• a=a

• delete h

• c=c

Louis JACHIET 10 / 21

Levenshtein distance

0 1 2 3 4 5
0

1

2

3

4

5

c h a t \0

c

a

t

s

\0

2 2

1

1

0

2

Alternative solution
• we have a graph

• we can run a shortest

path algorithm!

⇒ in O(n× d) where d is the

distance.

Louis JACHIET 11 / 21

Enumerating subsets

Fix any ordering and then:

subsets(e1, . . . , en) = subsets(e2, . . . , en) with or without e1

Some considerations:

• the target function needs to be “composable”

• sometimes the order matters

• using bitmasks might help

Louis JACHIET 12 / 21

Range DP

Range DP problem

Given an array A compute some metric on all subarrays A[i : j].

• in the simple case do(i , j) → ∀i<k<jdo(i , k) ∧ do(k , j) O(n3)

• sometimes do(i , j) = do(i + 1, j) ∧ do(i , j − 1) O(n2)

• sometimes you need to have a clever trick to

compute the full solution...

Louis JACHIET 13 / 21

Sparse DP

Generally memory is not an issue with DP but you might have very

few possible values over a large possible universe.

Use sets and hashsets!

Louis JACHIET 14 / 21

Sparse DP

Generally memory is not an issue with DP but you might have very

few possible values over a large possible universe.

Use sets and hashsets!

Louis JACHIET 14 / 21

Special cases of DP

Implementing a DP requires an acyclic recursion

What to do when the recursion might be cyclic?

• not care about it

• enforce it with a new parameter

• changing the problem

Examples

• use a DFS (DFS can be seen as DP with cyclicity)

• use a shortest path

• use the DAG of strongly connected components

• use an ad-hoc solution

Louis JACHIET 15 / 21

How to improve an inefficient DP

solution?

The systematic method

Write the recursive decision problem and

• for each parameter:

• what are the possible values (min/max/nb)?

• can it be deduced from the other parameters?

• is it a strict equality?

• for the recursion formula:

• can it be simplified?

• are we recomputing the same thing twice?

• can we precompute some part of it?

• can we use an approach different from memoization?

Louis JACHIET 16 / 21

How to implement DP solutions?

The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Recursive solution

• dist(i , j) = distance between u0...ui and v0...vj

• dist(−1,−1) = i + j + 2 when i < 0 or j < 0

• dist(i , j) = dist(i − 1, j − i) when ui = vj

• dist(i , j) = 1+min(dist(i−1, j), dist(i , j−1), dist(i−1, j−1))

Louis JACHIET 17 / 21

The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Recursive solution

• dist(i , j) = distance between u0...ui and v0...vj

• dist(−1,−1) = i + j + 2 when i < 0 or j < 0

• dist(i , j) = dist(i − 1, j − i) when ui = vj

• dist(i , j) = 1+min(dist(i−1, j), dist(i , j−1), dist(i−1, j−1))

Louis JACHIET 17 / 21

The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Constructive solution

dist(i , j) = distance between u0...ui−1 and v0...vj−1. dist(i , j) is

the biggest number such that:

• we have dist(0, 0) = 0

• dist(i + 1, j + 1) = dist(i , j) when ui = vj

• dist(i + 1, j) ≤ 1 + dist(i , j)

• dist(i , j + 1) ≤ 1 + dist(i , j)

• dist(i + 1, j + 1) ≤ 1 + dist(i , j)

Louis JACHIET 18 / 21

The problem and its solution

Levenshtein

we have two words u1...uℓ and v1...vk what is the edit distance

between them?

Constructive solution

dist(i , j) = distance between u0...ui−1 and v0...vj−1. dist(i , j) is

the biggest number such that:

• we have dist(0, 0) = 0

• dist(i + 1, j + 1) = dist(i , j) when ui = vj

• dist(i + 1, j) ≤ 1 + dist(i , j)

• dist(i , j + 1) ≤ 1 + dist(i , j)

• dist(i + 1, j + 1) ≤ 1 + dist(i , j)

Louis JACHIET 18 / 21

The recursive approach

const char u[Tm], v[Tm] ;

int dyn[Tm][Tm] ; // initialized to -INF

int dist(int i , int j) {

if(i<0 || j<0) // can only be -1 if negative

return i+j+2; // avoid out of bounds access

// i+j+2 = size of the non-empty string

int & cur = dyn[i][j] ;

if (cur == -INF) {

if(u[i] == v[j])

cur = dist(i-1,j-1);

else

cur = 1 + min(dist(i-1,j-1), dist(i-1,j), dist(i,j-1)) ;

}

return cur ;

}

Louis JACHIET 19 / 21

The iterative approach

const char u[Tm], v[Tm] ;

int dist[Tm][Tm]; // dist[i][j]= dist(u_0..u_i-1, v_0..v_j-1)

void min_equal(int & a, int b) { if(a>b) a=b;}

void compute_dist() {

fill(dist[0], dist[Tm], INF) ;

dist[0][0] = 0;

for(int i = 0 ; u[i] ; i++)

for(int j = 0 ; v[j] ; j++) {

// at step (i,j) we set the value dist[i][j]

if(i > 0) min_egal(dist[i][j],1+dist[i-1][j]);

if(j > 0) min_egal(dist[i][j],1+dist[i][j-1]);

if(i > 0 && j>0)

if(u[i-1] == v[j-1]) min_egal(dist[i][j], dist[i-1][j-1]);

else min_egal(dist[i][j], 1+dist[i-1][j-1]);

} // answer in dist[lengthU-1][lengthV-1]

Louis JACHIET 20 / 21

The iterative approach (alternative)

const char u[Tm], v[Tm] ;

int dist[Tm][Tm] ;

void compute_dist() {

fill(dist[0], dist[Tm], INF) ;

dist[0][0] = 0;

for(int i = 0 ; u[i] ; i++)

for(int j = 0 ; v[j] ; j++) {

// at step (i,j) we ``propagate'' the value dist[i][j]

if(u[i] == v[j]) min_egal(dist[i+1][j+1], dist[i][j]);

min_egal(dist[i+1][j+1], 1+dist[i][j]);

min_egal(dist[i+1][j], dist[i][j]);

min_egal(dist[i][j+1], dist[i][j]);

}

} // answer in dist[lengthU][lengthV]

Louis JACHIET 21 / 21

	Dynamic programming
	Let us solve some simple DP problems!
	Classical types of DP problems
	Special cases of DP
	How to improve an inefficient DP solution?
	How to implement DP solutions?

